Copied to
clipboard

G = C23.18D26order 416 = 25·13

8th non-split extension by C23 of D26 acting via D26/D13=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.18D26, (C2×C26).7D4, (C2×D4).5D13, C26.47(C2×D4), (C2×C4).18D26, (D4×C26).10C2, C23.D138C2, C26.29(C4○D4), C26.D414C2, (C2×C26).50C23, (C2×C52).61C22, (C22×Dic13)⋊5C2, C22.4(C13⋊D4), C135(C22.D4), C2.15(D42D13), (C22×C26).18C22, C22.57(C22×D13), (C2×Dic13).17C22, C2.11(C2×C13⋊D4), SmallGroup(416,156)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C23.18D26
C1C13C26C2×C26C2×Dic13C22×Dic13 — C23.18D26
C13C2×C26 — C23.18D26
C1C22C2×D4

Generators and relations for C23.18D26
 G = < a,b,c,d,e | a2=b2=c2=d26=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 392 in 78 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C13, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C26, C26, C26, C22.D4, Dic13, C52, C2×C26, C2×C26, C2×C26, C2×Dic13, C2×Dic13, C2×C52, D4×C13, C22×C26, C26.D4, C23.D13, C23.D13, C22×Dic13, D4×C26, C23.18D26
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, D13, C22.D4, D26, C13⋊D4, C22×D13, D42D13, C2×C13⋊D4, C23.18D26

Smallest permutation representation of C23.18D26
On 208 points
Generators in S208
(2 190)(4 192)(6 194)(8 196)(10 198)(12 200)(14 202)(16 204)(18 206)(20 208)(22 184)(24 186)(26 188)(28 110)(30 112)(32 114)(34 116)(36 118)(38 120)(40 122)(42 124)(44 126)(46 128)(48 130)(50 106)(52 108)(53 79)(55 81)(57 83)(59 85)(61 87)(63 89)(65 91)(67 93)(69 95)(71 97)(73 99)(75 101)(77 103)(132 159)(134 161)(136 163)(138 165)(140 167)(142 169)(144 171)(146 173)(148 175)(150 177)(152 179)(154 181)(156 157)
(1 174)(2 175)(3 176)(4 177)(5 178)(6 179)(7 180)(8 181)(9 182)(10 157)(11 158)(12 159)(13 160)(14 161)(15 162)(16 163)(17 164)(18 165)(19 166)(20 167)(21 168)(22 169)(23 170)(24 171)(25 172)(26 173)(27 100)(28 101)(29 102)(30 103)(31 104)(32 79)(33 80)(34 81)(35 82)(36 83)(37 84)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 96)(50 97)(51 98)(52 99)(53 114)(54 115)(55 116)(56 117)(57 118)(58 119)(59 120)(60 121)(61 122)(62 123)(63 124)(64 125)(65 126)(66 127)(67 128)(68 129)(69 130)(70 105)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 113)(131 199)(132 200)(133 201)(134 202)(135 203)(136 204)(137 205)(138 206)(139 207)(140 208)(141 183)(142 184)(143 185)(144 186)(145 187)(146 188)(147 189)(148 190)(149 191)(150 192)(151 193)(152 194)(153 195)(154 196)(155 197)(156 198)
(1 189)(2 190)(3 191)(4 192)(5 193)(6 194)(7 195)(8 196)(9 197)(10 198)(11 199)(12 200)(13 201)(14 202)(15 203)(16 204)(17 205)(18 206)(19 207)(20 208)(21 183)(22 184)(23 185)(24 186)(25 187)(26 188)(27 109)(28 110)(29 111)(30 112)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 119)(38 120)(39 121)(40 122)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(49 105)(50 106)(51 107)(52 108)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(131 158)(132 159)(133 160)(134 161)(135 162)(136 163)(137 164)(138 165)(139 166)(140 167)(141 168)(142 169)(143 170)(144 171)(145 172)(146 173)(147 174)(148 175)(149 176)(150 177)(151 178)(152 179)(153 180)(154 181)(155 182)(156 157)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 36 147 57)(2 82 148 117)(3 34 149 55)(4 80 150 115)(5 32 151 53)(6 104 152 113)(7 30 153 77)(8 102 154 111)(9 28 155 75)(10 100 156 109)(11 52 131 73)(12 98 132 107)(13 50 133 71)(14 96 134 105)(15 48 135 69)(16 94 136 129)(17 46 137 67)(18 92 138 127)(19 44 139 65)(20 90 140 125)(21 42 141 63)(22 88 142 123)(23 40 143 61)(24 86 144 121)(25 38 145 59)(26 84 146 119)(27 198 74 157)(29 196 76 181)(31 194 78 179)(33 192 54 177)(35 190 56 175)(37 188 58 173)(39 186 60 171)(41 184 62 169)(43 208 64 167)(45 206 66 165)(47 204 68 163)(49 202 70 161)(51 200 72 159)(79 193 114 178)(81 191 116 176)(83 189 118 174)(85 187 120 172)(87 185 122 170)(89 183 124 168)(91 207 126 166)(93 205 128 164)(95 203 130 162)(97 201 106 160)(99 199 108 158)(101 197 110 182)(103 195 112 180)

G:=sub<Sym(208)| (2,190)(4,192)(6,194)(8,196)(10,198)(12,200)(14,202)(16,204)(18,206)(20,208)(22,184)(24,186)(26,188)(28,110)(30,112)(32,114)(34,116)(36,118)(38,120)(40,122)(42,124)(44,126)(46,128)(48,130)(50,106)(52,108)(53,79)(55,81)(57,83)(59,85)(61,87)(63,89)(65,91)(67,93)(69,95)(71,97)(73,99)(75,101)(77,103)(132,159)(134,161)(136,163)(138,165)(140,167)(142,169)(144,171)(146,173)(148,175)(150,177)(152,179)(154,181)(156,157), (1,174)(2,175)(3,176)(4,177)(5,178)(6,179)(7,180)(8,181)(9,182)(10,157)(11,158)(12,159)(13,160)(14,161)(15,162)(16,163)(17,164)(18,165)(19,166)(20,167)(21,168)(22,169)(23,170)(24,171)(25,172)(26,173)(27,100)(28,101)(29,102)(30,103)(31,104)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,105)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,113)(131,199)(132,200)(133,201)(134,202)(135,203)(136,204)(137,205)(138,206)(139,207)(140,208)(141,183)(142,184)(143,185)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,196)(155,197)(156,198), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,197)(10,198)(11,199)(12,200)(13,201)(14,202)(15,203)(16,204)(17,205)(18,206)(19,207)(20,208)(21,183)(22,184)(23,185)(24,186)(25,187)(26,188)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,105)(50,106)(51,107)(52,108)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(131,158)(132,159)(133,160)(134,161)(135,162)(136,163)(137,164)(138,165)(139,166)(140,167)(141,168)(142,169)(143,170)(144,171)(145,172)(146,173)(147,174)(148,175)(149,176)(150,177)(151,178)(152,179)(153,180)(154,181)(155,182)(156,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,36,147,57)(2,82,148,117)(3,34,149,55)(4,80,150,115)(5,32,151,53)(6,104,152,113)(7,30,153,77)(8,102,154,111)(9,28,155,75)(10,100,156,109)(11,52,131,73)(12,98,132,107)(13,50,133,71)(14,96,134,105)(15,48,135,69)(16,94,136,129)(17,46,137,67)(18,92,138,127)(19,44,139,65)(20,90,140,125)(21,42,141,63)(22,88,142,123)(23,40,143,61)(24,86,144,121)(25,38,145,59)(26,84,146,119)(27,198,74,157)(29,196,76,181)(31,194,78,179)(33,192,54,177)(35,190,56,175)(37,188,58,173)(39,186,60,171)(41,184,62,169)(43,208,64,167)(45,206,66,165)(47,204,68,163)(49,202,70,161)(51,200,72,159)(79,193,114,178)(81,191,116,176)(83,189,118,174)(85,187,120,172)(87,185,122,170)(89,183,124,168)(91,207,126,166)(93,205,128,164)(95,203,130,162)(97,201,106,160)(99,199,108,158)(101,197,110,182)(103,195,112,180)>;

G:=Group( (2,190)(4,192)(6,194)(8,196)(10,198)(12,200)(14,202)(16,204)(18,206)(20,208)(22,184)(24,186)(26,188)(28,110)(30,112)(32,114)(34,116)(36,118)(38,120)(40,122)(42,124)(44,126)(46,128)(48,130)(50,106)(52,108)(53,79)(55,81)(57,83)(59,85)(61,87)(63,89)(65,91)(67,93)(69,95)(71,97)(73,99)(75,101)(77,103)(132,159)(134,161)(136,163)(138,165)(140,167)(142,169)(144,171)(146,173)(148,175)(150,177)(152,179)(154,181)(156,157), (1,174)(2,175)(3,176)(4,177)(5,178)(6,179)(7,180)(8,181)(9,182)(10,157)(11,158)(12,159)(13,160)(14,161)(15,162)(16,163)(17,164)(18,165)(19,166)(20,167)(21,168)(22,169)(23,170)(24,171)(25,172)(26,173)(27,100)(28,101)(29,102)(30,103)(31,104)(32,79)(33,80)(34,81)(35,82)(36,83)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,96)(50,97)(51,98)(52,99)(53,114)(54,115)(55,116)(56,117)(57,118)(58,119)(59,120)(60,121)(61,122)(62,123)(63,124)(64,125)(65,126)(66,127)(67,128)(68,129)(69,130)(70,105)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,113)(131,199)(132,200)(133,201)(134,202)(135,203)(136,204)(137,205)(138,206)(139,207)(140,208)(141,183)(142,184)(143,185)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,196)(155,197)(156,198), (1,189)(2,190)(3,191)(4,192)(5,193)(6,194)(7,195)(8,196)(9,197)(10,198)(11,199)(12,200)(13,201)(14,202)(15,203)(16,204)(17,205)(18,206)(19,207)(20,208)(21,183)(22,184)(23,185)(24,186)(25,187)(26,188)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,105)(50,106)(51,107)(52,108)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(131,158)(132,159)(133,160)(134,161)(135,162)(136,163)(137,164)(138,165)(139,166)(140,167)(141,168)(142,169)(143,170)(144,171)(145,172)(146,173)(147,174)(148,175)(149,176)(150,177)(151,178)(152,179)(153,180)(154,181)(155,182)(156,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,36,147,57)(2,82,148,117)(3,34,149,55)(4,80,150,115)(5,32,151,53)(6,104,152,113)(7,30,153,77)(8,102,154,111)(9,28,155,75)(10,100,156,109)(11,52,131,73)(12,98,132,107)(13,50,133,71)(14,96,134,105)(15,48,135,69)(16,94,136,129)(17,46,137,67)(18,92,138,127)(19,44,139,65)(20,90,140,125)(21,42,141,63)(22,88,142,123)(23,40,143,61)(24,86,144,121)(25,38,145,59)(26,84,146,119)(27,198,74,157)(29,196,76,181)(31,194,78,179)(33,192,54,177)(35,190,56,175)(37,188,58,173)(39,186,60,171)(41,184,62,169)(43,208,64,167)(45,206,66,165)(47,204,68,163)(49,202,70,161)(51,200,72,159)(79,193,114,178)(81,191,116,176)(83,189,118,174)(85,187,120,172)(87,185,122,170)(89,183,124,168)(91,207,126,166)(93,205,128,164)(95,203,130,162)(97,201,106,160)(99,199,108,158)(101,197,110,182)(103,195,112,180) );

G=PermutationGroup([[(2,190),(4,192),(6,194),(8,196),(10,198),(12,200),(14,202),(16,204),(18,206),(20,208),(22,184),(24,186),(26,188),(28,110),(30,112),(32,114),(34,116),(36,118),(38,120),(40,122),(42,124),(44,126),(46,128),(48,130),(50,106),(52,108),(53,79),(55,81),(57,83),(59,85),(61,87),(63,89),(65,91),(67,93),(69,95),(71,97),(73,99),(75,101),(77,103),(132,159),(134,161),(136,163),(138,165),(140,167),(142,169),(144,171),(146,173),(148,175),(150,177),(152,179),(154,181),(156,157)], [(1,174),(2,175),(3,176),(4,177),(5,178),(6,179),(7,180),(8,181),(9,182),(10,157),(11,158),(12,159),(13,160),(14,161),(15,162),(16,163),(17,164),(18,165),(19,166),(20,167),(21,168),(22,169),(23,170),(24,171),(25,172),(26,173),(27,100),(28,101),(29,102),(30,103),(31,104),(32,79),(33,80),(34,81),(35,82),(36,83),(37,84),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,96),(50,97),(51,98),(52,99),(53,114),(54,115),(55,116),(56,117),(57,118),(58,119),(59,120),(60,121),(61,122),(62,123),(63,124),(64,125),(65,126),(66,127),(67,128),(68,129),(69,130),(70,105),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,113),(131,199),(132,200),(133,201),(134,202),(135,203),(136,204),(137,205),(138,206),(139,207),(140,208),(141,183),(142,184),(143,185),(144,186),(145,187),(146,188),(147,189),(148,190),(149,191),(150,192),(151,193),(152,194),(153,195),(154,196),(155,197),(156,198)], [(1,189),(2,190),(3,191),(4,192),(5,193),(6,194),(7,195),(8,196),(9,197),(10,198),(11,199),(12,200),(13,201),(14,202),(15,203),(16,204),(17,205),(18,206),(19,207),(20,208),(21,183),(22,184),(23,185),(24,186),(25,187),(26,188),(27,109),(28,110),(29,111),(30,112),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,119),(38,120),(39,121),(40,122),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(49,105),(50,106),(51,107),(52,108),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(131,158),(132,159),(133,160),(134,161),(135,162),(136,163),(137,164),(138,165),(139,166),(140,167),(141,168),(142,169),(143,170),(144,171),(145,172),(146,173),(147,174),(148,175),(149,176),(150,177),(151,178),(152,179),(153,180),(154,181),(155,182),(156,157)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,36,147,57),(2,82,148,117),(3,34,149,55),(4,80,150,115),(5,32,151,53),(6,104,152,113),(7,30,153,77),(8,102,154,111),(9,28,155,75),(10,100,156,109),(11,52,131,73),(12,98,132,107),(13,50,133,71),(14,96,134,105),(15,48,135,69),(16,94,136,129),(17,46,137,67),(18,92,138,127),(19,44,139,65),(20,90,140,125),(21,42,141,63),(22,88,142,123),(23,40,143,61),(24,86,144,121),(25,38,145,59),(26,84,146,119),(27,198,74,157),(29,196,76,181),(31,194,78,179),(33,192,54,177),(35,190,56,175),(37,188,58,173),(39,186,60,171),(41,184,62,169),(43,208,64,167),(45,206,66,165),(47,204,68,163),(49,202,70,161),(51,200,72,159),(79,193,114,178),(81,191,116,176),(83,189,118,174),(85,187,120,172),(87,185,122,170),(89,183,124,168),(91,207,126,166),(93,205,128,164),(95,203,130,162),(97,201,106,160),(99,199,108,158),(101,197,110,182),(103,195,112,180)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G13A···13F26A···26R26S···26AP52A···52L
order1222222444444413···1326···2626···2652···52
size111122442626262652522···22···24···44···4

74 irreducible representations

dim111112222224
type+++++++++-
imageC1C2C2C2C2D4C4○D4D13D26D26C13⋊D4D42D13
kernelC23.18D26C26.D4C23.D13C22×Dic13D4×C26C2×C26C26C2×D4C2×C4C23C22C2
# reps123112466122412

Matrix representation of C23.18D26 in GL4(𝔽53) generated by

1000
0100
0010
00052
,
52000
05200
00520
00052
,
1000
0100
00520
00052
,
151200
511600
0001
0010
,
30000
292300
00030
00230
G:=sub<GL(4,GF(53))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,52],[52,0,0,0,0,52,0,0,0,0,52,0,0,0,0,52],[1,0,0,0,0,1,0,0,0,0,52,0,0,0,0,52],[15,51,0,0,12,16,0,0,0,0,0,1,0,0,1,0],[30,29,0,0,0,23,0,0,0,0,0,23,0,0,30,0] >;

C23.18D26 in GAP, Magma, Sage, TeX

C_2^3._{18}D_{26}
% in TeX

G:=Group("C2^3.18D26");
// GroupNames label

G:=SmallGroup(416,156);
// by ID

G=gap.SmallGroup(416,156);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,96,218,188,13829]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^26=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽